Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems
نویسندگان
چکیده
Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computationintensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we consider an Orthogonal FrequencyDivision Multiplexing Access (OFDMA) based multi-user and multi-MEC-server system, where the task offloading strategies and wireless resources allocation are jointly investigated. Aiming at minimizing the total energy consumption, we propose the joint offloading and resource allocation strategy for latencycritical applications. Through the bi-level optimization approach, the original NP-hard problem is decoupled into the lower-level problem seeking for the allocation of power and subcarrier and the upper-level task offloading problem. Simulation results show that the proposed algorithm achieves excellent performance in energy saving and successful offloading probability (SOP) in comparison with conventional schemes.
منابع مشابه
Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks
Mobile-Edge Computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this article, a MEC enabled multi-cell wireless network is considered where each Base Station (BS) is equipped with a MEC server that can assist mobil...
متن کاملEfficient Radio Resource Management for Wireless Cellular Networks with Mobile Edge Computing
Mobile edge computing (MEC) has attracted great interests as a promising approach to augment computational capabilities of mobile devices. An important issue in the MEC paradigm is computation offloading. In this paper, we propose an integrated framework for computation offloading and interference management in wireless cellular networks with mobile edge computing. In this integrated framework,...
متن کاملComputation Rate Maximization for Wireless Powered Mobile-Edge Computing with Binary Computation Offloading
Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks (WSNs) and Internet of Things (IoT). The recent development of radio frequency (RF) based wireless power transfer (WPT) and mobile edge computing (MEC) technologies provide promising sol...
متن کاملJoint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks
Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...
متن کاملMobile Edge Computation Offloading Using Game Theory and Reinforcement Learning
Due to the ever-increasing popularity of resourcehungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they...
متن کامل